Mubashir, S. S., Khan, N. A., Padder, B. A., Bhat, Z. A. & Bhat, S. N. Morphological differentiation of Venturia species infecting different pome and stone fruits in Jammu and Kashmir, India. Indian Phytopath. 77, 335–343 (2024).
Mubashir, S. S. et al. Baseline sensitivities of Venturia inaequalis populations to the Difenaconazole, a sterol demethylation inhibitor fungicide. Front. Crop Improv. 11, 2965–2968 (2023).
Köller, W., Wilcox, W., Barnard, J., Jones, A. & Braun, P. Detection and quantification of resistance of Venturia inaequalis populations to sterol demethylation inhibitors. Phytopathology 87, 184–190 (1997).
Nabi, A. et al. First report of Myclobutanil resistance and shift in sensitivity to difenoconazole and flusilazole in North-western Himalyan Venturia inaequalis populations. Australas. Plant Pathol. 52, 13–22 (2023).
Carisse, O. & Jobin, T. Resistance to dodine in populations of Venturia inaequalis in Quebec, Canada. Plant. Health Progress. 11, 17 (2010).
Polat, Z. & Bayraktar, H. Resistance of Venturia inaequalis to multiple fungicides in Turkish apple orchards. J. Phytopathol. 169, 360–368 (2021).
Gao, L., Berrie, A., Yang, J. & Xu, X. Within-and between‐orchard variability in the sensitivity of Venturia inaequalis to myclobutanil, a DMI fungicide, in the UK. Pest Manage. Science: Former. Pesticide Sci. 65, 1241–1249 (2009).
Hoffmeister, M., Zito, R., Böhm, J. & Stammler, G. Mutations in Cyp51 of Venturia inaequalis and their effects on DMI sensitivity. J. Plant Dis. Prot. 128, 1467–1478 (2021).
Chatzidimopoulos, M., Zambounis, A., Lioliopoulou, F. & Vellios, E. Detection of Venturia inaequalis isolates with multiple resistance in Greece. Microorganisms 10, 2354 (2022).
Yaegashi, H., Hirayama, K., Akahira, T. & Ito, T. Point mutation in CYP51A1 of Venturia inaequalis is associated with low sensitivity to sterol demethylation inhibitors. J. Gen. Plant Pathol. 86, 245–249 (2020).
Chartrain, L. & Brown, J. K. Molecular evolution and mechanisms of fungicide resistance in plant pathogenic fungi. In Burleigh Dodds Series in Agricultural Science (ed. Ferreira, J. B.) 1–37 (Burleigh Dodds Science Publishing Limited Cambridge, UK 2023).
Dooley, H. Fungicide-resistance Management Tactics: Impacts on Zymoseptoria Tritici Populations (University of Reading, 2015).
Köller, W., Parker, D., Turechek, W., Avila-Adame, C. & Cronshaw, K. A two-phase resistance response of Venturia inaequalis populations to the QoI fungicides kresoxim-methyl and trifloxystrobin. Plant. Dis. 88, 537–544 (2004).
Prencipe, S., Sillo, F., Garibaldi, A., Gullino, M. L. & Spadaro, D. Development of a sensitive TaqMan qPCR assay for detection and quantification of Venturia inaequalis in apple leaves and fruit and in air samples. Plant. Dis. 104, 2851–2859 (2020).
Villani, S. M., Hulvey, J., Hily, J. M. & Cox, K. D. Overexpression of the CYP51A1 gene and repeated elements are associated with differential sensitivity to DMI fungicides in Venturia Inaequalis. Phytopathology 106, 562–571 (2016).
Standish, J. R., Brenneman, T. B., Brewer, M. T. & Stevenson, K. L. Assessing fitness costs and phenotypic instability of fentin hydroxide and tebuconazole resistance in Venturia Effusa. Plant. Dis. 103, 2271–2276 (2019).
Chen, F. et al. Baseline sensitivity of Monilinia fructicola from China to the DMI fungicide SYP-Z048 and analysis of DMI-resistant mutants. Plant. Dis. 96, 416–422 (2012).
Zwiers, L. H., Stergiopoulos, I., Gielkens, M. M., Goodall, S. D. & De Waard, M. A. ABC transporters of the wheat pathogen Mycosphaerella graminicola function as protectants against biotic and xenobiotic toxic compounds. Mol. Genet. Genomics. 269, 499–507 (2003).
Hawkins, N. & Fraaije, B. Fitness penalties in the evolution of fungicide resistance. Annu. Rev. Phytopathol. 56, 339–360 (2018).
Mikaberidze, A. & McDonald, B. A. Fitness cost of resistance: impact on management. Fungicide resistance in plant pathogens: principles and a guide to practical management, 77–89 (2015).
Brent, K. J. & Hollomon, D. W. Fungicide Resistance: The Assessment of riskVol. 2 (Global Crop Protection Federation Brussels, 1998).
Cools, H. J. & Fraaije, B. A. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manage. Sci. 69, 150–155 (2013).
Gisi, U. Assessment of selection and resistance risk for demethylation inhibitor fungicides in aspergillus fumigatus in agriculture and medicine: a critical review. Pest Manage. Sci. 70, 352–364 (2014).
Frederick, Z. A., Villani, S. M. & Cox, K. D. The effect of delayed-dormant chemical treatments on demethylation inhibitor (DMI) sensitivity in a DMI-resistant population of Venturia Inaequalis. Plant. Dis. 99, 1751–1756 (2015).
Lucas, J. A., Hawkins, N. J. & Fraaije, B. A. The evolution of fungicide resistance. Adv. Appl. Microbiol. 90, 29–92 (2015).
Nassreen, F. Assessment of Resistance Development in Venturia inaequalis (Cke.) Wint. And Alternaria Mali Roberts against Systemic Fungitoxicants in Kashmir Valley (SKUAST-K, 2008).
Kacho, N. F., Banday, S. & Ashraf, S. Venturia inaequalis sensitivity to ergosterol biosynthesis inhibitors in Kashmir valley. Indian Phytopath. 66, 284–286 (2013).
Schnabel, G. & Jones, A. L. The 14α-demethylasse (CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology 91, 102–110 (2001).
Nene, Y. & Thapilyal, L. Poisoned food technique of fungicides in plant disease control. (2002).
Murray, M. & Thompson, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4326 (1980).
Chapman, K. S., Sundin, G. W. & Beckerman, J. L. Identification of resistance to multiple fungicides in field populations of Venturia Inaequalis. Plant. Dis. 95, 921–926 (2011).
Stević, M., Vukša, P. & Elezović, I. Resistance of Venturia inaequalis to demethylation inhibiting (DMI) fungicides. Žemdirbyste 97, 65–72 (2010).
Villani, S. M., Biggs, A. R., Cooley, D. R., Raes, J. J. & Cox, K. D. Prevalence of myclobutanil resistance and difenoconazole insensitivity in populations of Venturia Inaequalis. Plant. Dis. 99, 1526–1536 (2015).
Köller, W., Parker, D. & Reynolds, K. Baseline sensitivities of Venturia inaequalis to sterol demethylation inhibitors. (1991).
Smith, F. D., Parker, D. M. & Köller, W. Sensitivity distribution of Venturia inaequalis to the sterol demethylation inhibitor flusilazole: baseline sensitivity and implications for resistance monitoring. Phytopathology 81, 392–396 (1991).
Limon, C. L. Genetics behind the Variability in Sensitivity to the Demethylation Inhibitor (DMI) Fungicides Myclobutanil and Tebuconazole in Venturia Inaequalis (University of Reading, 2018).
Cañas-Gutiérrez, G. P. et al. Analysis of the CYP51 gene and encoded protein in propiconazole‐resistant isolates of Mycosphaerella fijiensis. Pest Manage. Science: Former. Pesticide Sci. 65, 892–899 (2009).
Becher, R. & Wirsel, S. G. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl. Microbiol. Biotechnol. 95, 825–840 (2012).
Lichtemberg, P. S. et al. The point mutation G461S in the MfCYP51 gene is associated with tebuconazole resistance in Monilinia fructicola populations in Brazil. Phytopathology 107, 1507–1514 (2017).
Parker, J. E. et al. Resistance to antifungals that target CYP51. J. Chem. Biol. 7, 143–161 (2014).
Warrilow, A. G. et al. The evolution of azole resistance in Candida albicans sterol 14α-demethylase (CYP51) through incremental amino acid substitutions. Antimicrob. Agents Chemother. 63, 101128aac02586–101128aac02518 (2019).
Morio, F., Loge, C., Besse, B., Hennequin, C. & Le Pape, P. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn. Microbiol. Infect. Dis. 66, 373–384 (2010).
Zhan, J., Stefanato, F. & McDonald, B. A. Selection for increased cyproconazole tolerance in Mycosphaerella graminicola through local adaptation and in response to host resistance. Mol. Plant. Pathol. 7, 259–268 (2006).
Leroux, P., Albertini, C., Gautier, A., Gredt, M. & Walker, A. S. Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella Graminicola. Pest Manage. Science: Former. Pesticide Sci. 63, 688–698 (2007).
Stammler, G. et al. Frequency of different CYP51-haplotypes of Mycosphaerella graminicola and their impact on epoxiconazole-sensitivity and-field efficacy. Crop Protect. 27, 1448–1456 (2008).
Mair, W. et al. Proposal for a unified nomenclature for target-site mutations associated with resistance to fungicides. Pest Manage. Sci. 72, 1449–1459 (2016).
Delye, C., Laigret, F. & Corio-Costet, M. F. A mutation in the 14 alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl. Environ. Microbiol. 63, 2966–2970 (1997).
Tucker, M. A. et al. Analysis of mutations in West Australian populations of Blumeria graminis f. sp. hordei CYP51 conferring resistance to DMI fungicides. Pest Manage. Sci. 76, 1265–1272 (2020).
Karaoglanidis, G., Thanassoulopoulos, C. C. & Ioannidis, P. Fitness of Cercospora Beticola field isolates–resistant and–sensitive to demethylation inhibitor fungicides. Eur. J. Plant. Pathol. 107, 337–347 (2001).
Karaoglanidis, G. & Thanassoulopoulos, C. Phenotypic instability of Cercospora Beticola Sacc. Strains expressing resistance to the sterol demethylation-inhibiting (DMI) fungicide flutriafol after cold exposure. J. Phytopathol. 150, 692–696 (2002).
Köller, W., Smith, F. & Reynolds, K. Phenotypic instability of flusilazole sensitivity in Venturia Inaequalis. Plant. Pathol. 40, 608–611 (1991).
Cox, K., Bryson, P. & Schnabel, G. Instability of propiconazole resistance and fitness in Monilinia fructicola. Phytopathology 97, 448–453 (2007).
For 37 years, CBl served as a trusted source of industry news for HFA members and the global fitness community. The way people consume news has changed, and thi
Wearable technology has come a long way since the first digital wristwatches and early pedometers. Today, wearables have evolved into advanced devices that t
The move expands Genesis Health Clubs into Arkansas and LouisianaGenesis Health Clubs is growing—again.The privately owned, Kansas-based cl